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Abstract

In many classification problems, it is helpful or
crucial that models produce not only predictions
that are correct, but also probability estimates that
are well-calibrated, so that predictions are neither
overly confident nor insufficiently confident.

Recent work has shown deep neural networks
to achieve high accuracy but worse calibration
than shallow nets. We replicate these findings,
and compare different approaches for improving
the calibration of neural networks. As the base-
line approach, we consider the calibration of the
softmax outputs from a single network; this is
compared to Deep Ensembles, MC Dropout, and
Concrete Dropout. Through experiments on the
CIFAR-100 data set, we find that a large neural
network can be significantly over-confident about
its predictions. We show on a classification prob-
lem that an ensemble of deep networks has better
classification accuracy and calibration compared
to a single network, and that MC Dropout and
Concrete Dropout significantly improves the cali-
bration of a large network.

1. Introduction
Deep neural networks are frequently employed in models
for classification tasks. Given a test input, a neural network
classifier typically produces not only a predicted class label
but also a measure of how confident the network is about
its prediction. A standard approach is to take the maximum
softmax output of a neural network as confidence.

In the last decade, deep neural networks have achieved ever
higher accuracies in various classification tasks. However,
classification accuracy is not the only important metric in
many situations: it can also be desirable or crucial that
the classifier is well-calibrated, so that its predictions are
neither overly confident nor insufficiently confident.

Calibration matters wherever overly confident yet incorrect
predictions can be harmful or offensive, such as in medical
diagnosis and in language models handling offensive text
(Amodei et al., 2016). In high-stakes applications such as
autonomous driving systems, incorrect predictions made
with high confidence can even be fatal.

Despite its importance, model calibration has not been
studied as extensively in machine learning literature as
metrics like classification accuracy (Naeini et al., 2015). It
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Figure 1. Confidence and calibration plots for a small CNN and
a much deeper one, each trained on the CIFAR-100 dataset. The
bigger network is poorly calibrated on validation data, with most
predictions being overly confident. (See Section 5.1 for details.)

has been noted that calibration is an orthogonal concern
to accuracy: the predictions of a neural network may be
highly accurate yet poorly calibrated, and vice versa.

Much of our project was motivated by a recent paper named
On Calibration of Modern Neural Networks (Guo et al.,
2017), which showed that modern neural networks can
be very poorly calibrated. Through extensive experiments
on CIFAR-100 and other datasets, the paper investigated
how factors such as network depth and weight decay affect
model calibration. A key result was that a 110-layer ResNet
(He et al., 2016) can exhibit much poorer calibration than a
5-layer LeNet (LeCun et al., 1998) on CIFAR-100.

It has been shown that model calibration can be significantly
improved through Deep Ensembles (Lakshminarayanan
et al., 2017), where an ensemble consists of networks with
the same architecture but trained with different random
weight initialisations and input ordering.

A fruitful line of research from the last few years stems
from an interpretation of Dropout (Srivastava et al., 2014)
as approximate inference in a Bayesian neural network
(Gal, 2016). Following this interpretation, MC Dropout
uses Dropout at test time to yield stochastic forward passes.
A novel variant called Concrete Dropout (Gal et al., 2017)
is designed to improve performance and calibration.
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For two network architectures, we compare the calibration
of 1) a single network with Dropout, 2) the same network
with Dropout enabled at test time, 3) a Deep Ensemble, and
4) a single network with Concrete Dropout. The next sec-
tion gives a technical definition of model calibration, along
with different measures to analyse miscalibration. Section 3
describes the methods we use for obtaining confidence es-
timates from our neural networks. Section 4 gives a brief
overview of the used data set and neural network architec-
tures. Section 5 details our main experiments and Section 6
goes in greater detail about our observations. Finally, the
paper closes with our conclusions and avenues for further
work in Sections 7 and 8.

2. Confidence and calibration
Say we have a classifier which, given any input x, outputs a
vector p̂ such that p̂k is an estimate of the probability that x
belongs to class k. (The softmax output of a neural network
gives such a vector p̂: see Section 3.1.) We shall call p̂k the
confidence of the classifier about the true class of x being k.

We restrict our attention to predictions that are in the form
of single class labels. In the situation above, the classifier
would predict that x belongs to class k̂ B argmaxk (p̂k)
with confidence p̂ B p̂k̂ = maxk p̂k.

Ideally, the model confidence p̂ should reflect the "true"
probability p that x belongs to class k̂, so if a model makes
predictions with about 90% confidence on some inputs, then
about 90% of predicted class labels should be correct. If
this is the case, then the model is said to be well-calibrated.

2.1. Measuring calibration

To see whether a model is well-calibrated, we can make a
confidence plot and a calibration plot. From these plots,
we can compute the expected calibration error (ECE). This
section gives a brief review of these concepts, following the
notation in (Guo et al., 2017).

Given N inputs {x(i)}Ni=1 where the true class of x(i) is k(i),
suppose that a model predicts that x(i) belongs to class k̂(i)

with confidence p̂(i).

First, the indices i are placed into L equally sized bins B`
according to the value of p̂(i). We took L = 10 which gives
the bins [0, 0.1), . . . , [0.8, 0.9), [0.9, 1].

We visualise the bins with yellow bars in a confidence plot.
There are two examples on the top row of Figure 1.

For every bin B`, we define the average accuracy acc(B`)
and average confidence conf(B`) in the natural manner:

acc(B`) B
1
|B` |

∑
i∈B`

1[k̂(i) = k(i)].

conf(B`) B
1
|B` |

∑
i∈B`

p̂(i).

For a perfectly calibrated model, every bin B` would have
acc(B`) = conf(B`). The difference acc(B`) − conf(B`)

measures a calibration gap for bin B`, with negative values
indicating over-confidence and positive values indicating
under-confidence.

We plot the average accuracy and average confidence in a
calibration plot, with purple bars showing conf(B`) and
hollow green bars showing acc(B`) for each bin B`. The
bottom row of Figure 1 gives two examples. The bottom
right plot has acc(B`) < conf(B`) for every bin B`, which
indicates that the predictions are over-confident.

For a scalar measure of calibration, we shall consider the
expected calibration error (ECE), defined as the weighted
average of the absolute calibration gaps:

ECE =

L∑
`=1

|B` |
N
|acc(B`) − conf(B`)|.

where N is the total number of inputs x(i). Note that the
ECE cannot be computed from a calibration plot by itself:
we need the bin sizes as shown in a confidence plot.

Guo et al. (2017) considers a model well-calibrated if its
ECE is below 0.01.

3. Statistical models
This section describes three statistical models that make use
of neural networks to perform classification: the standard
model, a uniform mixture model, and a Bayesian model.

In practice, these models lead to different approaches for
obtaining predictions:

• Take the softmax output from a single neural network.
• Deep Ensembles: compute the average of outputs

from several networks with identical architecture.
• MC Dropout: enable Dropout at test time to obtain

stochastic forward passes of test inputs.
• Concrete Dropout: a novel variant of MC Dropout.

Although understanding these models is not essential for
experiments, we discuss them below so that a more concrete
discussion of our results is possible later.

3.1. Softmax output from a single network

In neural networks that are designed for classification tasks,
the final layer is usually a softmax layer, whose output p̂ has
non-negative elements which sum to 1. It is standard to treat
the softmax output as defining a probability distribution
over class labels, as follows:

Let us denote the network weights by a vector w. For any
network input x, the softmax output p̂(x; w) is interpreted
as specifying a probability distribution over the possible
class labels of input x:

P[k | x,w] = p̂k(x; w).

This interpretation motivates using cross-entropy as the loss
function, since cross-entropy is the negative log-likelihood
under this model (Blundell et al., 2015).
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Figure 2. Confidence and calibration plots for BigNet. For each approach, the results are from a fixed random seed.

We think of the softmax output p̂k as the neural network’s
confidence that the input x belongs to class k.1

3.2. Deep Ensembles

It has long been known that ensembling models improves
predictive performance (Dietterich, 2000). However, it is
not clear whether an ensemble of neural networks produces
probability estimates that are better-calibrated compared
to a single network. In a recent paper, Lakshminarayanan
et al. (2017) showed that this is indeed the case.

A Deep Ensemble (Lakshminarayanan et al., 2017) is an
ensemble of neural networks with the same architecture and
hyperparameters but trained with different random weight
initialisations and input ordering. Such networks can be
trained independently in parallel.

Given an input x, the mth neural network gives a softmax
output p̂(m)(x; w(m)) which specifies a predictive distribution
P(m)(k | x,w(m)) over the classes to which x might belong.
The ensemble is treated as a uniformly-weighted mixture
model, so that the overall predictive distribution is given by

P[k | x,w] =
1
M

M∑
m=1

P(m)[k | x,w(m)] =
1
M

M∑
m=1

p̂(m)
k

where the vector w = {w(m)}Mm=1 encodes the parameters of
all the neural networks.

In our experiments, we use M = 5 different random seeds
to obtain a Deep Ensemble. (The random seed affects both
the weight initialisation and the shuffling of training data.)

1There seems to be disagreement over what the phrase "model
confidence" should mean. In his thesis, Gal (2016) argues that
it is erroneous to interpret the softmax output as "confidence".
However, this is not the majority view held by authors including
Lakshminarayanan et al. (2017, §3.5) and Guo et al. (2017, §4.2).

3.3. MC Dropout

Dropout (Srivastava et al., 2014) is a popular regularisation
technique for neural networks. In a standard Dropout layer,
each input vector is multiplied elementwise with a binary
vector z with zi ∼ Bernoulli(p) for some fixed p ∈ [0, 1],
effectively “switching off” neurons in the previous layer
with probability p. At test time, it is usual to turn off

Dropout and scale the outputs of any Dropout layer by
1 − p to account for the higher number of active neurons.

Recent work has shown that training a neural network with
Dropout can in fact be interpreted as approximate inference
in a Bayesian interpretation of the network (Gal, 2016; Gal
& Ghahramani, 2016). More precisely, tuning the network
weights to minimise the loss function can be understood as
optimising the parameters θ of a variational approximation
qθ(w) to the true posterior p(w | D) over weights, for some
prior distribution p(w).

Following the Bayesian interpretation above, we can sample
from the predictive distribution through test-time Dropout.
Using Dropout at test time gives us stochastic forward
passes of test inputs. The softmax output p̂ from such a
stochastic forward pass is then a single sample from the
predictive distribution: P[k | x,w] ≈ p̂k.

To better approximate the predictive distribution P[k | x,w]
for a given input x, we can averaging the softmax outputs
{p̂(t)}Tt=1 from multiple stochastic forward passes:

P[k | x,w] ≈
1
T

T∑
t=1

p̂(t)
k .

Gal (2016) refers to this procedure as MC Dropout.
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3.4. Concrete Dropout

According to Gal (2016), it is necessary to perform a grid
search over dropout probabilities for MC Dropout to return
well-calibrated probability estimates. Such a grid search is
infeasible for deep models with multiple Dropout layers and
impossible when the amount of training data is variable (as
is the case in reinforcement learning systems). As a solution
to both of these problems, Gal et al. (2017) proposed a
continuous relaxation of Dropout called Concrete Dropout.

In standard Dropout, the dropout vector z is binary, so the
network loss function is not differentiable w.r.t. the dropout
probability p. As a result, it is impossible to optimise p with
backpropagation. In Concrete Dropout, the elements of the
dropout vector z are instead sampled from the continuous
Concrete distribution (Maddison et al., 2016):

z̃i = sigmoid
(

log p − log(1 − p) + log u − log(1 − u)
t

)
with u ∼ Uniform(0, 1). Since the relation between z̃ and u
is differentiable w.r.t p, this allows the dropout probabilities
to be optimised as parameters of the neural network.

At test time, the outputs of multiple stochastic forward
passes are averaged, just like with MC Dropout.

4. Methodology
Much like Guo et al. (2017), our main goal is to investigate
the calibration of neural networks trained in accordance to
standard practice in machine learning, with no regard given
to calibration until test time. With this in mind, we chose
the following training procedure and network architectures.

4.1. Data set and training

To allow comparison with the results by Guo et al. (2017),
we focus on the CIFAR-100 data set (Krizhevsky, 2009)
for evaluating our neural networks. CIFAR-100 consists
of images belonging to 100 balanced classes. Each image
has 32 × 32 colour pixels, each encoded with 3 values (red,
green, blue).

We applied the default training / testing split to obtain a
training set of size 50,000 and a validation set of 10,000.
Each class has 500 training and 100 validation images.

Each of our neural networks is trained to minimise the stan-
dard categorical cross-entropy loss (i.e. the NLL). Model
checkpoints are created throughout training, and only the
weights which achieve the lowest validation loss are kept.
Note that calibration is not part of the loss function or the
early stopping criterion, and ECE is not directly correlated
with NLL (G48, 2018; Guo et al., 2017). We evaluate clas-
sification accuracy and calibration only during analysis,
when all training is complete.

The smaller networks were trained with RMSprop (Tiele-
man & Hinton, 2012) with a learning rate of 0.0002, while
the larger networks were trained with stochastic gradient
descent with a fixed learning rate of 0.01.

4.2. Network architectures

Our experiments centred on two convolutional neural net-
work (CNN) architectures, with different numbers of layers.
Each of our networks follows a layer pattern that is standard
for CNNs (Karpathy et al., 2017).

We mimic the setup in Guo et al. (2017) and compare a
relatively simple and shallow CNN, which we hereafter call
SmallNet, to another CNN that is considerably deeper and
more complex in size, which we refer to as BigNet. Our
smaller network is based on a standard CNN pattern, while
the larger network is taken from previous work by Liu &
Deng (2015).

All of our convolutional layers have kernel size 3 × 3 with
strides 1 × 1. Unless otherwise specified, zero-padding is
then applied so that each output channel has the same shape
as the input channels. Any max-pooling layer between
convolutional layers has a pool size of 2 × 2.

Every dense or convolutional layer is followed by a ReLU
activation layer, except for the output layer, which is always
a dense layer followed by softmax. Before this output layer,
there is always a dense layer with 512 units followed by a
Dropout layer with fixed Dropout rate 0.5.

SmallNet: Our smaller network has 4 convolutional layers.
After the input layer, there are two convolutional layers
with 32 output filters, the first of which has zero-padding,
followed by a max-pooling layer and a fixed Dropout layer.
Next there is a similar block which has 64 output filters
in each of two convolutional layers but is otherwise iden-
tical. An example script provided by Keras states that this
network achieves 79% accuracy on the CIFAR-10 dataset,
whose distribution is similar to that of CIFAR-100.

BigNet: Our larger network has 13 convolutional layers.
The network is a modified version of VGG-16 (Simonyan &
Zisserman, 2014) that Liu & Deng (2015) tuned to achieve
good performance on CIFAR-10. We took the version
which has Batch Normalization and fixed Dropout layers as
this achieved the highest accuracy in Liu & Deng (2015).

The larger network has 5 groups of convolutional layers,
with each group specified by 1) the number of convolutional
layers, 2) the number of filters in each convolutional layer,
and 3) a fixed Dropout rate. Max-pooling is applied after
each group.

Each group has either 2 or 3 convolutional layers, each of
which is followed by a Batch Normalization layer. Each
Batch Normalization layer before the final one is followed
by a fixed Dropout layer.

The groups in our network have the same specification as
chosen by Liu & Deng (2015):

• 2 conv layers / 64 filters / dropout rate 0.3.
• 2 conv layers / 128 filters / dropout rate 0.4.
• 3 conv layers / 256 filters / dropout rate 0.4.
• 3 conv layers / 512 filters / dropout rate 0.4.
• 3 conv layers / 512 filters / dropout rate 0.4.
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4.3. Implementation

Our experiments were implemented with Keras.

To train a Deep Ensemble, we simply set different ran-
dom seeds before initialising the network. The random
seed affects both the random weight initialisation and in-
put ordering, so our procedure is an implementation of the
algorithm given by Lakshminarayanan et al. (2017).

For MC Dropout, the networks are trained as with standard
Dropout, but at test time, we set training=True in calls to
every Dropout layer to obtain stochastic forward passes.2

For Concrete Dropout with SmallNet, every convolutional
and dense layer (except for the output layer) was wrapped
in a Concrete Dropout wrapper. With BigNet, we wrapped
only those layers that preceded a dropout layer. For Con-
crete Dropout, we take every layer that is preceded by a
fixed Dropout layer and remove the Dropout layer. Then,
we take the reference implementation of Concrete Dropout
as a layer wrapper in Keras, given by Gal et al. (2017), and
apply this to the remaining layer.

5. Experiments

Classification accuracy

Baseline DE MC CD

SmallNet 50.2% 52.5% 47.4% 36.3%
BigNet 59.7% 67.1% 61.6% 48.8%

Mean confidence

SmallNet 52.3% 45.2% 38.2% 38.6%
BigNet 79.7% 73.8% 62.0% 47.8%

ECE

SmallNet 0.027 0.073 0.092 0.026
BigNet 0.200 0.067 0.012 0.022

Table 1. Metrics for each of Baseline, Deep Ensembles (M = 5),
MC Dropout (T = 25 passes), Concrete Dropout (T = 25 passes)
on CIFAR-100. For each approach, the results are from one fixed
random seed. (Corresponding confidence and calibration plots for
BigNet are shown in Figure 2.)

5.1. Baselines

As a baseline, we trained each of SmallNet and BigNet on
CIFAR-100 with 5 random seeds.

The networks achieved classification accuracies of 48.1%
and 62.0% respectively, where each accuracy figure is the
average from different random seeds.

2Another alternative would have been to directly train a model
with test-time dropout enabled, but then one needs multiple for-
ward passes with the validation set for a precise early stopping
criterion.

More important for our purposes are the calibration metrics:
SmallNet achieved an ECE of 0.013 (±0.007 std. dev.),
while BigNet had 0.234 (±0.020). For a particular instance
of each architecture, the confidence and calibration plots
are shown in Figure 1.

From the confidence plots, we can see that BigNet is much
more confident than SmallNet on validation data. Indeed,
SmallNet had a mean confidence of 48.7% (+0.6% of its
accuracy) while BigNet had 85.3% (+23.3%). Along with
ECE values, these figure suggest that BigNet is significantly
over-confident on the validation set. The calibration plot
for BigNet also demonstrates that BigNet is less accurate
than its confidence might suggest.

Our finding mirrors a key result from Guo et al. (2017) who
observed a 110-layer ResNet (He et al., 2016) can exhibit
much poorer calibration than a 5-layer LeNet (LeCun et al.,
1998) on CIFAR-100. The same paper found that increasing
the network width/depth and applying Batch Normalization
lead to worse calibration. These factors do distinguish
BigNet from SmallNet, so it comes as no surprise to us that
BigNet is much more poorly calibrated.

5.2. Deep Ensembles

For each network architecture, we created a Deep Ensemble
by simply grouping together the 5 networks trained from
different random seeds. As described in Section 3.2, the
output of a Deep Ensemble is simply the uniform average
of the softmax outputs from the 5 networks.

The resulting classification accuracies were higher than
the baselines: 52.5% for SmallNet and 67.1% for BigNet.
Again, we are not surprised as ensembling models has long
been known to improve accuracy (Dietterich, 2000).

The effect of ensembling on calibration is different for the
two architectures. As we can see in Table 1, the ECE
actually increased for SmallNet (0.027 to 0.073), while the
ECE of BigNet dropped dramatically (0.200 to 0.067). We
analyse the situation for BigNet further in Section 6.2.

5.3. MC Dropout

Using Dropout at test time, we performed T = 25 stochastic
forward passes for an instance of each architecture.

The figures in Table 1 show that the accuracy remained
roughly the same for each of SmallNet and BigNet while
the mean confidence decreased: from 52.3% to 38.2% for
SmallNet and from 79.7% to 62.0% for BigNet.

Curiously, the impact on calibration is notably different for
the two architectures: the ECE of SmallNet rose to 0.092
from 0.027, while the ECE of BigNet dropped dramatically
to 0.200 from 0.012. We will attempt to see why this is the
case in Section 6.3.
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Figure 3. Learning curves for our baseline SmallNet trained on CIFAR-100. The dashed red line indicates the early stopping at epoch 37.

5.4. Concrete Dropout

Concrete Dropout has a lengthscale parameter `, which
affects the regularization of the weights and of the dropout
probabilities. Following the work of Gal et al. (2017), we
trained multiple networks with ` in {10−2, 10−3, . . . , 10−9}

and intended to select the one that achieves the highest
likelihood. However, the difference between performance
was negligible: every model reached an NLL between 1.38
and 1.41, so we chose to perform experiments with the
default lengthscale of ` = 10−4.

For testing, we performed T = 25 stochastic forward passes
just as for MC Dropout. The accuracies turned out to be no-
ticeably lower than the baselines: from 50.2% to 36.3% for
SmallNet and from 59.7% to 48.8% for BigNet. However,
Concrete Dropout did improve the calibration of BigNet
significantly, with the ECE dropping to 0.022 from 0.200.

For each network, similar results (omitted here) were ob-
tained from different random seeds and prior lengthscales.
To investigate why the metrics are so different compared to
those from other approaches, we could perhaps look at the
final dropout probabilities from Concrete Dropout and track
metrics such as NLL over training. We leave the analysis
of the Concrete Dropout results as possible future work.

6. Analysis
6.1. Evolution of metrics over training

As Figure 3 shows, the baseline SmallNet did not overfit
with RMSprop within 100 epochs. The validation accuracy
and NLL actually continued to generally improve after the
point of early stopping, but the gains were not significant.

While the curves for accuracy and NLL are relatively
smooth and predictable, the ECE curve show significant
fluctuations. After the point of early stopping, the ECE
fluctuations were especially wild, but it can be observed
that the ECE generally increased (from a minimum of 0.01
to 0.07 ± 0.05). Thus, as training progressed past a certain
point, the network learned to increase its accuracy at the
expense of well-calibrated predictions. (We made the same
observation in our interim report on the EMNIST By-Class
dataset with a fully connected network, where the calibra-
tion decrease near the end of the training was even clearer

(G48, 2018).)

Guo et al. (2017, Section 3) made a similar observation on
CIFAR-100 with a 110-layer ResNet, but using NLL an
indirect measure of calibration. Our previous results (G48,
2018) and Figure 3 suggest that NLL is not necessarily a
good measure of calibration. Depending on the purpose,
ECE might be a better indicator. (Note that ECE assigns
equal penalty to an accuracy of 0.5 for confidence 0.65 and
an accuracy of 0.8 for confidence 0.95, whereas NLL does
not.) This suggests that the use of NLL as a measure of
calibration by Lakshminarayanan et al. (2017) might be
incorrect.

6.2. Calibration of Deep Ensembles

For BigNet, we observe that the confidence and calibration
plots of the baseline and the Deep Ensemble look similar in
Figure 2. The main difference appears to be the increased
heights of the bins in the calibration plots, with confidences
remaining roughly the same. Table 1 shows that the mean
confidence indeed did not change much. (The behaviour
of SmallNet is similar.) However, the confidence of many
predictions actually changed when we ensembled the 5 net-
works: Figure 5 shows the change in confidence compared
to the baseline for the examples in the validation set.

It is unclear why ensembling had vastly different effects on
BigNet and SmallNet. A possible approach to investigating
this is to vary the ensemble size and see if any relationships
can be observed. We leave this as possible future work.

-0.6 -0.4 -0.2 0 0.2 0.4
Change in confidence from ensembling

0

1000

2000

3000

4000

Figure 5. Histogram of confidence changes as a result of ensem-
bling, in BigNet.
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Figure 4. Calibration plots for different number of stochastic forward passes with MC Dropout on SmallNet.

6.3. Varying the number of MC Dropout passes
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Figure 6. ECE and accuracy of SmallNet with MC Dropout for
different numbers of stochastic forward passes, for one random
seed. Error bars represent 2 standard deviations of the values from
10 stochastic forward passes of the whole validation set.

For each of SmallNet and BigNet, the accuracy improves
steadily as more forward passes are averaged; Figure 6
shows this relationship for one instance of SmallNet. A
probable explanation is that increasing the number of
stochastic forward passes yields a closer approximation
of the predictive distribution (see Bayesian interpretation
of Dropout, Section 3.3). For SmallNet, the accuracy with
a single forward pass is 38.8% ± 1.1%, whereas with 25
forward passes, it is 47.3% ± 0.3%.

With one forward pass on SmallNet, the mean ECE is
0.078± 0.013. Best calibration is achieved with T = 2 at an
ECE of 0.020 ± 0.010, i.e. it is reasonably well calibrated.
As the number of forward passes increases, calibration error
grows steadily, and beyond 25 passes the model has an ECE
above 0.09. Such behaviour was not specific to the random
seed used: the results from all 5 different seeds were qual-
itatively similar. Figure 4 gives details on the results for

T ∈ {1, 2, 5, 25}. From the confidence plots (top row) we
can observe that with more forward passes averaged, the
average predictions become less confident (i.e. data points
in the bars move left on average), while as observed above,
accuracy increases (i.e. the heights of the confidence bars
increases). This causes the confidence bars to rise just to
the ideal diagonal line with T = 2, but move beyond the
diagonal for T > 2, making the model underconfident. As
in the calculation of ECE we take the absolute difference
of bar heights, this results in the shape of the blue curve in
Figure 6.

With BigNet, calibration error decreases monotonically for
more forward passes (not shown in the report). Compared
with the baseline, this is partly because the mean confidence
decreases while the overall accuracy increases (Figure 2
and Table 1).

7. Conclusions
Our experiments gave empirical evidence that convolutional
neural networks of modern scale can exhibit much poorer
calibration than simpler networks, corroborating previous
work by Guo et al. (2017). We found that NLL and ECE
don’t always follow the same trajectory, despite the use of
NLL as a measure of calibration by some authors. We found
that ensembling networks trained from different random
seeds increases classification accuracy, as shown by Lak-
shminarayanan et al. (2017). Ensembling did not improve
calibration for a small network, but it improved calibration
significantly for a large convnet, while still giving highly
confident predictions that were accurate. We discovered
that performing Dropout at test time and averaging the
outputs of multiple stochastic forward passes can be an
effective way to significantly improve calibration, but that
the optimal number of forward passes can depend on the
network architecture.
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8. Further work
Apart from the lines of enquiry suggested in Sections 5-6,
there are many others that can be pursued. One is whether
novel approaches designed explicitly to improve calibration,
such as Platt scaling (Guo et al., 2017), are more effective
in setups similar to ours. Another possible extension is
to test other approaches that involve stochastic forward
passes. While MC Dropout and Concrete Dropout are
relatively easy to test, there are other notable techniques
arising from Bayesian interpretations of neural networks:
stochastic gradient variational Bayes (Kingma & Welling,
2013) and Variational Dropout (Kingma et al., 2015) are
some examples.
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