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Abstract
Literature has shown that modern neural net-
works can give a poor estimation of their uncer-
tainty, but well-calibrated models are important
in many applications, such as those responsible
for human safety. In this project we investigate
the effect of various factors on model calibration.
This interim project report details our baseline ex-
periments, where we treat the softmax output of
a fully connected three-layer network as its confi-
dence in the prediction. Our experiments showed
that our baseline model is already well-calibrated
when trained on the EMNIST By-Class dataset.
Calibration worsened when we used only a sub-
set of the training set. We experimented with
various regularisation constants for weight decay,
and found that increasing regularisation increases
calibration, but too much regularisation leads to
a decrease in both accuracy and calibration. One
of our main findings is that cross-entropy error
is not a good indicator of model calibration. We
also describe our plans for the next four work
weeks, where we intend to perform similar exper-
iments with more advanced calibration methods
such as deep ensembles and test-time dropout
methods.

1. Introduction
Deep neural networks have seen significant improvements
in accuracy following recent advances (Goodfellow et al.,
2016), with state-of-the-art performance achieved in var-
ious fields including computer vision (Krizhevsky et al.,
2012) and speech recognition (Hinton et al., 2012). While
the predictions of these models are highly accurate, for
many applications it is desirable or even critical for our
models to indicate when its predictions are uncertain and
to what degree. For example, a speech recognition sys-
tem would ideally indicate its uncertainty so that human
annotators can check only those parts where the system
has the lowest confidence. In autonomous driving systems,
misclassifications with high certainty might contribute to
fatal incidents.

In this work we measure the effect of different factors on
model calibration in a supervised image classification task
using the EMNIST By-Class dataset. First, we check if
expected calibration error (ECE) changes qualitatively sim-
ilarly as prediction error and cross-entropy error (which
in this case is the same as negative log-likelihood, NLL).

Then we change the number of training samples, and finally
add weight decay to the model with different regularisation
constants. The effects on calibration are evaluated, and our
results are compared against those of Guo et al. (2017).

In this interim report we describe the baseline experiments
we performed, where we treat the softmax outputs of a sin-
gle fully-connected neural network as a measure of its cer-
tainty. For our final report, we plan to implement methods
that use dropout at test time: MC dropout (Gal & Ghahra-
mani, 2016), which can be interpreted as approximate in-
ference in a Bayesian interpretation of the network, and
Concrete Dropout (Gal et al., 2017), which was developed
to circumvent the need to do a grid search over dropout
probabilities when doing MC dropout. These methods are
to be compared against our baseline results, to see if they
show similar patterns in the aforementioned questions and
if they really improve calibration.

In the following section we formalise the problem of model
calibration and different ways to evaluate it, namely cal-
ibration plots and expected calibration error. Section 3
describes the system used in our experiments, including
the network architecture and uncertainty estimation method.
Section 4 gives details on the performed experiments, which
show how model calibration changes during training, and
also plots calibration as a function of training set size and
weight decay constant. Finally, Section 5 summarises our
interim conclusions, in Section 6 we describe our plans for
coursework 4.

2. Description of model calibration
In this report we focus on the calibration of supervised
multi-class classifiers, where the dataset contains inputs
x ∈ X together with their true labels y ∈ Y. The dataset
contains independent samples from a groun distribution
π(x, y). Given an input x, a softmax classifier outputs a
vector p̂. Ideally, we want p̂i to be equal to the probability
that the input is in class i. If this always holds, then we
say that the model is perfectly calibrated. For example,
if the model makes 1000 predictions for independent test
samples, each with confidence p̂ := argmax(p̂) = 0.7, then
approximately 700 of them should be correct. Formally,
this can be expressed with the following equation:

Pπ(x,y)(ŷ = y|x, p̂) = p̂. (1)

Usually X is a high-dimensional continuous space (e.g.
in the case of EMNIST, the inputs come from the 784-
dimensional unit cube), and the distribution π(x, y) is un-
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known, so we cannot calculate this probability exactly. Be-
low we describe two methods to evaluate model calibration.

Qualitative evaluation. We can represent the model ac-
curacy as a function of its certainty on a calibration plot,
also known as a reliability diagram (DeGroot et al., 1982;
Niculescu-Mizil & Caruana, 2005) – Figure 2 shows an
example. The variable p̂ ∈ [0, 1] is a continuous variable,
so the interval [0, 1] is first split into M equal-width disjoint
intervals Im = ( m−1

M , m
M ]. The examples are then split into

M bins Bm (m = 1 . . . M), where for each i ∈ Bm, p̂i ∈ Im.
The accuracy of a bin is defined as usual:

acc(Bm) =
1
|Bm|

∑
i∈Bm

δyi,ŷi , (2)

where δ is the Kronecker delta. The mean confidence of a
bin is defined as follows:

conf(Bm) =
1
|Bm|

∑
i∈Bm

p̂i. (3)

These numbers are plotted on a confidence vs. accuracy
chart. If and only if the model is perfectly calibrated,
acc(Bm) = conf(Bm) for all 1 ≤ m ≤ M. Note that we
cannot judge the calibration of the model from only the cal-
ibration plot, as it doesn’t show the number of examples in
each bin. For this reason, we always include the histogram
of p̂ along with the calibration plots.

Quantitative evaluation. From a calibration plot we can
judge if a model is miscalibrated, but when comparing a
large number of models, it is more convenient to express
the level of calibration with a single number. Expected
calibration error is the average difference between the ac-
curacy and confidence of the binned predictions: acc(Bm)
and conf(Bm) (Naeini et al., 2015) :

ECE =
1
N

M∑
m=1

|Bm| ·
∣∣∣acc(Bm) − conf(Bm)

∣∣∣, (4)

where N =
∑

m Bm is the number of samples. ECE is zero
if and only if the model is perfectly calibrated; and in the
worst case ECE = 1, or 100%. Note that perfect calibra-
tion does not imply perfect accuracy: when predicting class
labels, the model that always outputs the prior class prob-
abilities is perfectly calibrated, but its accuracy is only as
big as the proportion of the largest class, which is usually
far from 100%.

3. Baseline systems
The baseline system was a neural network with 2 fully con-
nected hidden layers (with 512 hidden units each), ReLU
activation functions, trained to minimize cross-entropy soft-
max error. The weights were initialised with Glorot uniform
initialisation (Glorot & Bengio, 2010), and the bias vectors
initialised with zeros. In Coursework 2 we saw that on the
EMNIST task such a network architecture leads to almost
as good performance as deeper networks or convolutional
networks (s1765864 (2017) found a test set accuracy of

84.5% with this architecture vs. 88.3% with convolutional
nets), while it can be trained efficiently, which motivated
our decision to use it as a baseline system.

While more complex methods can achieve much better per-
formance, our goal in this report is to investigate model cal-
ibration, not to increase model accuracy. Furthermore, fully
connected networks are still frequently used in prediction
tasks (Kuleshov & Liang, 2015), so our results could lead
to improve best practices in fields where well-calibrated
systems are preferred over highly accurate ones.

Apart from the experiments in section 4.5 (where we ex-
plicitly noted the regularisation constant), the models were
trained without regularisation.

The models were trained with Adam learning rule (Kingma
& Ba, 2014), with the default settings of Keras (learning
rate 0.001, β1 = 0.9, β2 = 0.999). In section 4.3 we
used stochastic gradient descent (SGD) (Robbins & Monro,
1951) with a low learning rate, in order to deliberately in-
crease the training time, so that the evolution of error and
calibration can be assessed more accurately. All experi-
ments used a minibatch size of 100.

As a baseline method (i.e. in every reported experiment), we
treat the maximum of the softmax output as the confidence
of the model, p̂. Guo et al. (2017) found that these values
are not well calibrated on the CIFAR-100 dataset with more
complex networks (ECE = 4.9% . . . 16.5%), while the
same network architectures had slightly better calibration
on CIFAR-10 (ECE = 3.0% . . . 4.5%). We experienced
similar differences between MNIST and EMNIST datasets.

4. Experiments
4.1. Baseline on MNIST

We briefly experimented with the MNIST dataset (LeCun,
1998), and found that our model achieves an accuracy of
98.2%, with the vast majority of the predictions made with
over 98% confidence.

The confidence and accuracy figures were high enough
that calibration was mostly irrelevant – the model was al-
most perfectly calibrated. Hence we decided to focus on
the EMNIST By-Class dataset (Cohen et al., 2017) for the
remainder of our experiments, so that we have a more chal-
lenging learning task where calibration can be a problem.

The EMNIST By-Class dataset contains 697,932 images
of handwritten characters from 62 classes, corresponding
to the numerical digits, uppercase letters and lowercase
letters. In contrast to the EMNIST Balanced and By-
Merge datasets, pairs of easily confusable characters are not
merged in the EMNIST By-Class dataset. Alongside the
imbalance of the dataset, this makes for a more challenging
classification problem. The distribution of our training set
is shown in Figure 1. Apart from section 4.4, We used a
50% − 50% split for the training and validation sets.
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Figure 1. Distribution of the training examples we took from the EMNIST By-Class dataset.

4.2. Baseline on EMNIST
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Figure 2. Baseline network trained on EMNIST By-Class. Left:
Distribution of prediction confidence. Right: Calibration plot.
(The green bins represent a perfectly calibrated model.) Both
were evaluated on the validation set.

On the EMNIST By-Class dataset, our baseline model
achieved 84.2% classification accuracy. Compared to
MNIST, the distribution of prediction confidences was
much more interesting, with an average of 86.7%. The
model also turned out to be reasonably well-calibrated,
with an expected calibration error (ECE) of 2.5%. Figure 2
gives confidence and calibration plots for the model.

It has been shown that increasing model capacity leads to
miscalibration (Guo et al., 2017), so the fairly low ratio
of network parameters to training examples could be a
reason why our baseline is well-calibrated. (The model had
696,382 parameters, and we trained on 348,966 examples).

4.3. SGD with low learning rate

After testing out the baseline on EMNIST By-Class, we in-
vestigated how calibration evolves during training. Earlier,
when we had Adam as the optimiser, the model completed
training within 6 epochs. For clearer results in this section,
we prolonged the training process by using SGD with a
learning rate of 0.01.

It turned out that 0.01 was a low enough learning rate that
our baseline model did not overfit within 100 epochs: the
classification errors over the validation set are shown in
Figure 3.

We observed that calibration deteriorated as classification
accuracy improved. We can see from Figure 3 that past
epoch 40, classification error continues declining (albeit

noisily) while ECE increases drastically. In other words,
the network learned to increase its classification accuracy
at the expense of well-calibrated predictions.

A similar observation was also made in (Guo et al., 2017,
Section 3), which applied a 110-layer ResNet to the CIFAR-
100 dataset. To see the result visually, the paper used NLL
as an indirect measure of calibration. However, our results
in Figure 3 suggest that NLL might be a poor measure of
calibration in this situation, since NLL and ECE became
strongly disconnected after epoch 40. We would argue that
comparing ECE with classification error is more sensible,
since ECE measures calibration more directly.

4.4. Varying the training set size

Next we studied how decreasing the training set size affects
the calibration of our baseline model. We tried 12 different
sizes from 50,000 to 300,000, each with 5 different ran-
dom seeds. The random seed affects the network weight
initialisation as well as the shuffling of training data at each
epoch.

The results are shown in Figure 4. Naturally, classification
accuracy dropped as the training set became smaller. At the
same time, calibration suffers as we can see from the ECEs.
We notice that model calibration is sensitive to changes to
the random seed, percentage-wise to a larger extent than
the classification accuracy.
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Figure 4. Classification accuracy and ECE for different training set
sizes. For each training set size, we trained one baseline network
for each of 5 different random seeds.
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Figure 3. Various metrics evaluated over the validation set for our baseline network trained on EMNIST By-Class. For this experiment,
the optimiser was SGD with a learning rate of 0.01.

4.5. Weight decay

Weight decay is often used as a form of regularisation in
neural networks, as a means to increase the model’s ability
to generalise.

Experiments in literature showed that changing the regulari-
sation constant can improve model calibration significantly
(Guo et al., 2017). We checked if this holds for our baseline
network by applying L2 regularisation with different reg-
ularisation constants, ranging from λ = 10−7 to 10−2. The
results are shown in Figure 5.
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Figure 5. Classification error and ECE for various regularisation
constants, applied to our baseline network.

While classification accuracy stayed the same with λ be-
tween 10−7 and 10−4, in this range model calibration im-
proved with increasing regularisation. (Error changed from
83.9% to 84.2%, while ECE decreased from 3.1% to 0.6%.)

At λ = 10−4, classification accuracy started to deteriorate,
and at the same time calibration worsened at a much steeper
rate.

Guo et al. (2017, Section 3) found that model calibration
can improve by increasing the weight decay constant, well
after the model achieves minimum classification accuracy.
This was not the case for our baseline, as we can see from
Figure 5.

This shows that the combination of network architecture
and dataset affects the relationship between classification
error and calibration, and drawing general conclusions from
the results of an experiment on one dataset with one model
is premature.

5. Interim conclusions
Our experiments showed that our baseline model consisting
of two fully-connected hidden layers and a softmax output
layer was reasonably well-calibrated.

We discovered experimentally that varying the training set
size or model hyperparameters such as weight decay can
contribute to miscalibration. Calibration worsened as we de-
creased the number of training samples. The regularisation
constant had a single optimum that led to best calibration,
and deviating from it either way led to worse calibration
error, which agrees with the findings of Guo et al. (2017).
In one experiment, we observed that our baseline network
learned to improve its classification accuracy at the cost
of calibration after a certain epoch. The same experiment
demonstrated that NLL and ECE do not move hand-in-hand
as training progresses, despite the use of NLL as the mea-
sure of calibration by some authors (Lakshminarayanan
et al., 2016).

6. Future work
Most of the experiments we have performed so far were
intended to provide a baseline on which we could evaluate
methods for improving calibration such as ensembling and
test-time dropout. In the light of our discovery that our
baseline network was fairly well-calibrated, we turned to
exploring various factors which could affect calibration,
and managed to investigate the effect of regularisation and
training set size.

Our main intention now is to implement ensembling (Lak-
shminarayanan et al., 2016), MC dropout and Concrete
Dropout (Gal et al., 2017), and see if they demonstrate the
patterns we have seen from varying hyperparameters. We
plan to complete the implementations and the majority of
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experiments within the next two weeks (calendar weeks 9
and 10), and devote a week left to writing the report. The
final week is reserved as slack time, where we can perform
further investigations if the project goes according to plan.

It could well turn out that ensembling and test-time dropout
do not make a significant impact on calibration. In this
case, there might still be interesting results from varying
hyperparameters, similar to those we have observed so far.
A risk with our plan is that test-time dropout, especially
Concrete Dropout, might take more effort to implement
than we can afford. To mitigate this risk, we have located
a reference implementation for Concrete Dropout written
for Keras, which can be dropped into our experimental
framework if necessary.
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