Completeness theorem – Henkin model

Laszlo Treszkai

July 6, 2017

Let $\Gamma^* \subset F(\sigma)$ be a maximal consistent theory with the Henkin witness property: for every σ -formula φ , if $\Gamma^* \vdash \exists x \ \varphi$ then $\Gamma^* \vdash \varphi(x/c)$ for some constant symbol c. It can be seen that for every φ , $\Gamma^* \vdash \varphi$ whenever $\varphi \in \Gamma^*$. Let A be the set of \approx -equivalence classes of the constant symbols of σ for the following equivalence relation: $c \approx d$ whenever $\Gamma^* \vdash c = d$. Let \mathfrak{A} be a σ -structure with its universe A, with the following interpretations: $(c)_{\mathfrak{A}} = [c]; \ f_{\mathfrak{A}}([c]) = d \text{ iff } \Gamma^* \vdash f(c) = d; \ r_{\mathfrak{A}}(c) \text{ iff } \Gamma^* \vdash r(c)$. Note that f and Rare compatible with \approx : by the equality axioms, $c \approx d$ implies that $\Gamma^* \vdash f(c) = f(d)$ - similarly for R -, thus the value of functions and relations are independent of the equivalence class representatives. Also, by the Henkin property, functions have a value for every argument; i.e. the definitions are good.

In this paper I will prove that \mathfrak{A} is a model of Γ^* .

Notation. Throughout the article, the letters c and d denote constant symbols in the signature σ , e is a valuation over A, f is a function symbol, R is a relation symbol, t is a σ -term, x, y are variables, σ is a signature, φ , ψ are σ -formulas. [c] stands for the equivalence class of c (see below). \vec{x} stands for x_1, \ldots, x_k . (Similarly \vec{c} or $[\vec{c}]$). $\varphi(x/c)$ or t(x/c) denotes the formula or term obtained by substituting c for x. (Note that the term c never contains a bound variable of φ .) $\mathfrak{A} \models \varphi[e(x/a)]$ iff φ is true in \mathfrak{A} under the valuation e when x is mapped to $a \in A$.

Lemma 1. For every $\varphi \in F(\sigma)$ with k free variables, $\Gamma^* \vdash \varphi$ if and only if for any $c_i \in \sigma$ constant symbol $\Gamma^* \vdash \varphi(\vec{x}/\vec{c})$.

Proof. The only if part is trivial. For the *if* part, we prove the contrapositive. $\Gamma^* \not\vdash \varphi$ iff $\Gamma^* \not\vdash \forall \vec{x} \varphi$. Then by the maximality of Γ^* : $\Gamma^* \not\vdash \forall \vec{x} \varphi$. Changing notation: $\Gamma^* \vdash \exists \vec{x} \neg \varphi$. By the Henkin witness property, there are c_1, \ldots, c_k constant symbols in σ such that $\Gamma^* \vdash \neg \varphi(x_1/c_1, \ldots, x_k/c_k)$. The consistency of Γ^* ensures that $\Gamma^* \not\vdash \varphi(x_1/c_1, \ldots, x_k/c_k)$. \Box **Lemma 2.** For a σ -term t with k free variables, $\Gamma^* \vdash d = t(\vec{x}/\vec{c} \text{ for some constant symbol} c$ and d if and only if $[d] = (t(\vec{x}/\vec{c}))_{\mathfrak{N}}$.

Proof. Using the Henkin property of Γ^* and the definition of \mathfrak{A} , this lemma is easily proved by induction on the construction of t.

Proposition. For every $\varphi \in F(\sigma)$, $\Gamma^* \vdash \varphi$ (i.e. $\varphi \in \Gamma^*$) if and only if $\mathfrak{A} \models \varphi$.

Proof. We prove this claim by induction on the construction of φ . Throughout the proof we assume φ has k free variables, x_1, \ldots, x_k .

Case 1. φ has the form $t_1 = t_2$.

$$\begin{split} & \Gamma^* \vdash t_1 = t_2 \\ & \text{iff} \quad \text{for all } c_i \in \sigma: \quad \Gamma^* \vdash t_1 = t_2 \; (x_1/c_1 \dots x_k/c_k) \quad (\text{by Lemma 1}) \\ & \text{iff} \quad \text{for all } c_i \in \sigma, \text{ some } d \in \sigma, \text{ for } j = 1, 2: \\ & \Gamma^* \vdash t_j = d \; (\vec{x}/\vec{c}) \quad (\text{by the Henkin property and the equality axioms}) \\ & \left(t_j(\vec{x}/\vec{c})\right)_{\mathfrak{A}} = [d] \quad (\text{by Lemma 2}) \\ & \left(t_1(\vec{x}/\vec{c})\right)_{\mathfrak{A}} = \left(t_2(\vec{x}/\vec{c})\right)_{\mathfrak{A}} \\ & \text{iff} \quad \text{for all } c_i \in \sigma: \quad \mathfrak{A} \vDash t_1 = t_2 \; (\vec{x}/\vec{c}) \\ & \text{iff} \quad \text{for all } c_i \in \sigma: \quad \mathfrak{A} \vDash t_1 = t_2 \; [e(\vec{x}/[\vec{c}])] \quad (\text{by the substitution theorem}) \\ & \text{iff} \quad \mathfrak{A} \vDash \forall x_1 \dots \forall x_k \; t_1 = t_2 \quad (\text{because } A = \{[c] : c \in \sigma\}) \\ & \text{iff} \quad \mathfrak{A} \vDash t_1 = t_2 \end{split}$$

Case 2. φ has the form $R(t_1, \ldots, t_n)$.

$$\begin{split} &\Gamma^* \vdash R(t_1, \dots, t_n) \\ &\text{iff} \quad \text{for all } c_i \in \sigma: \quad \Gamma^* \vdash R(t_1, \dots, t_n) \; (\vec{x}/\vec{c}) \quad (\text{by Lemma 1}) \\ &\text{iff} \quad \text{for all } c_i \in \sigma, \text{ some } d_j \in \sigma \; (j = 1 \dots n): \\ &\Gamma^* \vdash t_j = d_j \; (\vec{x}/\vec{c}) \quad (\text{by the Henkin property}) \\ &\Gamma^* \vdash R(d_1, \dots, d_n) \quad (\text{by the equality axioms}) \\ &\mathfrak{A} \vDash R(d_1, \dots, d_n) \quad (\text{by the definition of } \mathfrak{A}) \\ &\text{iff} \quad \text{for all } c_i \in \sigma: \quad \mathfrak{A} \vDash R(t_1, \dots, t_n) \; (\vec{x}/\vec{c}) \quad (\text{by Lemma 2}) \\ &\text{iff} \quad \text{for all } c_i \in \sigma: \quad \mathfrak{A} \vDash R(t_1, \dots, t_n) \; [e(\vec{x}/[\vec{c}])] \quad (\text{by the substitution theorem}) \\ &\mathfrak{A} \vDash \forall x_1 \dots \forall x_k \; R(t_1, \dots, t_n) \end{split}$$

Case 3. $\varphi \equiv \neg \psi$.

 $\begin{array}{ll} \Gamma^* \not\vdash \neg \psi \\ \text{iff} & \Gamma^* \vdash \neg \forall x_1 \dots \forall x_k \ \neg \psi & (if \text{ part by the maximality of } \Gamma^*) \\ \text{iff} & \Gamma^* \vdash \exists \psi \\ \text{iff} & \text{for some } c_i \in \sigma \colon \ \Gamma^* \vdash \psi(\vec{x}/\vec{c}) \\ \text{iff} & \text{for some } c_i \in \sigma \colon \ \mathfrak{A} \vDash \psi(\vec{x}/\vec{c}) & (\text{by the induction hypothesis}) \\ \text{iff} & \mathfrak{A} \vDash \psi[e(\vec{x}/[\vec{c}])] & (\text{by the substitution theorem}) \\ \text{iff} & \mathfrak{A} \vDash \exists x_1 \dots \exists x_k \ \psi \\ \text{iff} & \mathfrak{A} \nvDash \neg \psi \end{array}$

Case 4. $\varphi \equiv \psi_1 \wedge \psi_2$.

$$\begin{split} & \Gamma^* \vdash \psi_1 \wedge \psi_2 \\ & \text{iff} \quad \text{for all } c_i \in \sigma \colon \ \Gamma^* \vdash \psi_1 \wedge \psi_2(\vec{x}/\vec{c}) \quad (\text{by Lemma 1}) \\ & \text{iff} \quad \text{for all } c_i \in \sigma \colon \ \Gamma^* \vdash \psi_1(\vec{x}/\vec{c}) \quad \text{AND} \quad \Gamma^* \vdash \psi_2(\vec{x}/\vec{c}) \\ & \text{iff} \quad \text{for all } c_i \in \sigma \colon \ \mathfrak{A} \models \psi_1(\vec{x}/\vec{c}) \quad \text{AND} \quad \mathfrak{A} \models \psi_2(\vec{x}/\vec{c}) \\ & \quad (\text{by the induction hypothesis}) \end{split}$$

iff $\mathfrak{A} \models \psi_1 \land \psi_2$ (by the substitution theorem and the construction of A)

Case 5. Finally, $\varphi \equiv \exists y \ \psi$.

 $\Gamma^* \vdash \exists y \ \psi$

iff for all $c_i \in \sigma$ and some $d \in \sigma$: $\Gamma^* \vdash \psi(\vec{x}/\vec{c}, y/d)$ (by Lemma 1 and Henkin property)

iff for all $c_i \in \sigma$ and some $d \in \sigma$: $\mathfrak{A} \models \psi(\vec{x}/\vec{c}, y/d)$ (by the induction hypothesis)

iff $\mathfrak{A} \models \exists y \ \psi$ (by the substitution theorem and the construction of A)